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Abstract

Welding plays an important role in manufacturing. But difficulties still exist for simulation of the welding process of large welded structures,
due to the limitation of computer capacity, mathematical models and software. This paper is devoted to developing an algorithm that tries to
simulate the thermal cycle during welding efficiently and accurately. A space–time finite element method (FEM) is proposed to solve the transient
convection–diffusion thermal equation. The method has been applied to the steady-state thermal analysis of welds. A moving coordinate frame
(Eulerian frame), in which the heat source is stationary, is used to improve the spatial resolution of a numerical analysis for the thermal cycle of
welds effectively, as well as to incorporate the addition of the filler metal naturally. This method is suitable for the thermal analysis in the weld
pool or/and weld joint region including starting and stopping transients.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The temperature field in the welding process is extremely
inhomogeneous and transient. For material points inside the
weld seam, temperatures can range from room temperature to
above melting point. During the thermal cycle, filler metals and
base metals which are inside the weld pool melt, solidify and
recrystallize. Meanwhile, microstructural transformations take
place in the heat-affected-zone (HAZ). Therefore, the tempera-
ture field determines the welding residual stress and distortion
not only directly through the thermal strains, but also indirectly
through the transformation strains that accompany the changes
in the microstructure and the temperature dependence of mate-
rial properties such as yield stress.

The early attempts to analyze the flow of heat in the welding
process were by Rosenthal [1] and Rykalin [2], who indepen-
dently developed analytic solutions, which were based on an
Eulerian formulation, to solve the heat equation for moving
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heat sources. Their solutions then became the primary analyti-
cal method for computing the steady state temperature fields in
welding [3]. However, there are limitations in these analytical
solutions: (1) geometry and heat input models are simplified;
(2) material property values are assumed to be temperature in-
dependent; and (3) heat transfer and heat radiation from the
surface to the ambient environment are often simplified or even
neglected.

Since the 1980s, with the advancement of the computer tech-
nology, the finite element method (FEM) has become popular
for computing the transient temperature fields in welding. The
transient Lagrangian formulation allowed the analysis of com-
plex geometry as well as nonlinear equations. Many successful
2-dimensional and 3-dimensional transient analyses on welds
have been developed [4–6]. To simulate the temperature field of
a weldment by using a Lagrangian formulation, however, there
are three major concerns [7]:

• To represent properly the sharp temperature gradient around
the heat source, a very fine mesh inside and near the weld
pool is required. Commonly, there are two methods to re-
alize this: (1) a fine space discretization is implemented
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Nomenclature

b coefficient for heat loss
C constant of value approximately 1
cp specific heat capacity
E reference spatial element
fx flux on Neumann boundary
h local mesh size
H enthalpy
I, In time domain
J spatial element Jacobian
J space–time element Jacobian
k thermal conductivity
kn time interval length
n outward normal unit vector on surface
℘ space–time physical element
q heat transferred from heat source to plate
Q heat source term
r a measure of the residual
R transitional electrical resistance
R vector of spatial basis functions
� space–time reference element
R0 modified Bessel function of second kind and zero

order
S,Sn space–time domain and slab
t, tn time in physical element
Δt physical time interval length
T temperature
T upper bound of time domain
Tf final temperature
T reference element in time

u velocity vector
v velocity of the moving heat source
V velocity field on the physical domain
W,Wn space–time domain for discretization
x, y, z Cartesian coordinates

Greek symbols

α thermal diffusivity
α′ modified thermal diffusivity
Γ boundary of the domain
δ stabilizing factor
Δ thickness of the plate
θ test functions
λij space–time basis functions
λc coefficient of convective heat transfer
λr coefficient of heat radiation
ρ density
τ 1, τ 3 time in reference element
Δτ reference time element interval length
ϕi spatial basis functions
Φ distribution function
χ1, χ3 basis functions on reference time element
Ω space domain
ξ, η, ζ coordinates in reference element

Subscripts and superscripts

0 initial condition
D Dirichlet boundary condition
in inflow boundary
N Neumann boundary condition
along the whole weld path, or (2) the mesh is updated dy-
namically with a small mesh size inside and near the weld
pool region while the heat source moves [8].

• To lessen or even avoid the numerical effect of “spot weld-
ing”, a very small time step size is also required. This leads
to a large number of time steps that can consume a huge
amount of computing time and data storage space.

• To include the addition of the filler metal, the geometry or
mesh must be updated while the weld pool moves, which
can be complex and costly. Therefore, the addition of the
filler metal has often been ignored in Lagrangian FEM for-
mulations. However, solidification of the filler material will
release a large amount of enthalpy, which may affect the
temperature distribution in the region after the molten pool
and in the HAZ. In fact, a correct temperature distribution
history is critical for microstructure evolution and thermal
stress analyses [9].

To address these difficulties, Gu [7] proposed a transformed
FEM Eulerian formulation to compute the steady state temper-
ature field in welds. It allowed a much higher spatial resolution
than a transient Lagrangian formulation, and only needed one
time step. Also, the addition of the filler metal becomes natural
in an Eulerian formulation. However, like Rosenthal’s solution,
the resulting energy equation assumed constant thermal proper-
ties, which may raise questions.

Rajadhyaksha and Michaleris [10] proposed an Eulerian fi-
nite element formulation, to optimize a quasi-static thermal
process using a SUPG formulation. They concluded that an
Eulerian formulation can drastically reduce the computational
run-time, and then can be applied to the optimization of quasi-
state processes. Chen et al. [11] also reported the reduction
of running time and data storage through the use of an Eule-
rian moving coordinate frame for the welding thermal analysis.
Compared to the transient Lagrangian formulation, they found
the Eulerian formulation to be more accurate and efficient.

In this paper, a nonlinear, transient FEM algorithm with tem-
perature dependent material properties is presented that uses
a space–time finite element formulation to solve the transient
convection–diffusion thermal equation. The space–time finite
element mesh uses basis functions that are continuous in space
but discontinuous in time. It retains the advantages that an Eu-
lerian frame possesses: high spatial resolution, large time step
size without “spot welding” effect and filler metal added nat-
urally. In fact, this space–time formulation allows the material
velocity and mesh velocity to be varied independently. Thus, it
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is capable of gracefully dealing with the full spectrum of the
Arbitrary Lagrangian–Eulerian (ALE) methods ranging from a
Lagrangian frame to an Eulerian frame. The Eulerian frame is
a special case of the space–time formulation.

For a long weld with a constant welding velocity, a quasi-
steady state solution of the thermal histories can be found over
most of the middle part of the weld joint in the Eulerian frame
if the frame fixed with the heat source. For a one-meter butt
weld, the region of end-transients is about 15 cm on both ends
[12]. So, for long welds, the quasi-steady state assumption for
the middle part is reliable. It is also very practical because many
real welds are often several meters in length. A steady state can
be obtained by running a transient analysis until it approaches
the steady state. Normally, this algorithm is suitable for the
weld pool and weld joint region. It is expected that the nonlin-
ear transient analysis in the Lagrangian frame would converge
more rapidly if the solution of a quasi-steady state analysis is
used as the first approximation.

Although a steady state Eulerian method [7,10,11] may be
more effective for an infinitely long weld with constant cross-
section, it cannot deal with the starting and ending transients of
starting and stopping a weld. The proposed space–time method
can deal gracefully and naturally with the starting and end-
ing transients of starting and stopping a weld. Furthermore, the
space–time method appears to have the potential to deal with
the important cases of pulsed welds and welds with weaving.

2. Space–time finite element

To accommodate the addition of the filler metal and the mov-
ing weld pool during the welding processes, the finite element
method is used in both the space and time dimensions.

For the space–time continuum domain, if space and time are
treated equivalently, the idea of discretizing this continuum by
use of space–time finite elements comes naturally. However,
due to the fact that information is transferred only from earlier
to later times, we do not need to have a global coupling of the
variables in the time dimension, but still we wish to retain the
standard step-wise approach from finite differences. To achieve
this we use a continuous Galerkin method for discretization in
space and a discontinuous method for discretization in time, by
using an arbitrary polynomial order [13–18].

Let 0 = t0 < t1 < t2 < t3 < · · · < tN = T be a sequence of
times and a partition of the time interval [0,T], and let Ω(t)

be a space domain that can change from one time-step to an-
other. A space–time “slab” Sn is defined as the set of all ordered
pairs (x, y, z, t), with (x, y, z) ∈ Ω(t) and t in the interval
In = [tn, tn+1], of length kn = tn+1 − tn; if Ω has no dependence
on t , then this is the Cartesian product, that is, Sn = Ω × In.
The union of all the slabs makes the whole space–time domain
Ω × I .

As mentioned earlier, a global coupling of the variables in
the time dimension is not necessary because information is
transferred only from earlier to later times. So, one space–time
“slab” is solved in each time step, while each “slab” is only one
element “high” in the time direction.
Let E be the 3-dimensional reference spatial element,
the vector of basis functions R(ξ, η, ζ ) and its gradients
∇R(ξ, η, ζ ) will be:

R(ξ, η, ζ ) = [
ϕ1(ξ, η, ζ ), ϕ2(ξ, η, ζ ), . . . , ϕm(ξ, η, ζ )

]
(1)

∇R(ξ, η, ζ ) =
⎡
⎢⎣

∂ϕ1(ξ,η,ζ )
∂ξ

∂ϕ2(ξ,η,ζ )
∂ξ

· · · ∂ϕm(ξ,η,ζ )
∂ξ

∂ϕ1(ξ,η,ζ )
∂η

∂ϕ2(ξ,η,ζ )
∂η

· · · ∂ϕm(ξ,η,ζ )
∂η

∂ϕ1(ξ,η,ζ )
∂ζ

∂ϕ2(ξ,η,ζ )
∂ζ

· · · ∂ϕm(ξ,η,ζ )
∂ζ

⎤
⎥⎦ (2)

Let T = [τ 1, τ 3] be the reference element in time. Assume
that the time basis is nodal and linear. In this case, χ1 and χ3

are the linear basis functions, while τ 1 and τ 3 are reference
nodes. Let Δτ = |τ 3 − τ 1| be the length of the time interval in
the reference time element, then, the basis functions and their
derivatives in the reference time element are:

χ1(τ ) = (
τ 3 − τ

)
/Δτ (3)

χ3(τ ) = (
τ − τ 1)/Δτ (4)

dχ1(τ )

dτ
= −1/Δτ (5)

dχ3(τ )

dτ
= 1/Δτ (6)

Let � be the space–time reference element � = E × T , then,
the basis is:

λij (ξ, η, ζ, τ ) = ϕi(ξ, η, ζ )χj (τ )

i = 1, . . . ,m; j = 1,3 (7)

for (ξ, η, ζ ) ∈ E and τ ∈ T . The space–time node (ξ, η, ζ, τ )

ranges over �.
Now, the space–time nodes in the physical element ℘ are

given by:⎡
⎢⎢⎢⎣

x1
1

y1
1

z1
1

t1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

x1
2

y1
2

z1
2

t1

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

x1
m

y1
m

z1
m

t1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

x3
1

y3
1

z3
1

t3

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

x3
2

y3
2

z3
2

t3

⎤
⎥⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

x3
m

y3
m

z3
m

t3

⎤
⎥⎥⎦

where (x
j
i , y

j
i , z

j
i , t

j ) ∈ ℘, with i = 1, . . . ,m; j = 1,3 is the ith
nodal position at time j . The mapping from � to the physical
element ℘ is then given by⎡
⎢⎣

x(ξ, η, ζ, τ )

y(ξ, η, ζ, τ )

z(ξ, η, ζ, τ )

t (τ )

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

∑m
i=1(λi1(ξ, η, ζ, τ )x1

i + λi3(ξ, η, ζ, τ )x3
i )∑m

i=1(λi1(ξ, η, ζ, τ )y1
i + λi3(ξ, η, ζ, τ )y3

i )∑m
i=1(λi1(ξ, η, ζ, τ )z1

i + λi3(ξ, η, ζ, τ )z3
i )

t1 + (Δt)
(τ−τ 1)

Δτ

⎤
⎥⎥⎥⎦ (8)

where λij (ξ, η, ζ, τ ) is the basis functions of the space–time el-
ement defined in Eq. (7). Δt is the physical time interval length
of the current physical interval [t1, t3]:
Δt = t3 − t1 (9)
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Now suppose there is a time-dependent velocity field V(x, y,

z, t) defined on the physical domain. Its nodal values on a par-
ticular element at time t are given by a 3 × m matrix

V(x, y, z, t) =
[

v1x v2x . . . vmx

v1y v2y . . . vmy

v1z v2z . . . vmz

]
(10)

In this study, the nodal velocities [vix, viy, viz]T , i = 1,2, . . . ,m,

are considered to be constant in time on each time interval
[tn, tn+1].

If we consider the spatial nodes in the physical element at
any time in interval [t1, t3] be advected from time t1 under the
velocity field V, then the space–time nodes can be given by:

⎡
⎢⎣

x(ξ, η, ζ, τ )

y(ξ, η, ζ, τ )

z(ξ, η, ζ, τ )

t (τ )

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

∑m
i=1 ϕix

1
i + (Δt)

(τ−τ 1)
Δτ

∑m
i=1 ϕivix∑m

i=1 ϕiy
1
i + (Δt)

(τ−τ 1)
Δτ

∑m
i=1 ϕiviy∑m

i=1 ϕiz
1
i + (Δt)

(τ−τ 1)
Δτ

∑m
i=1 ϕiviz

t1 + (Δt)
(τ−τ 1)

Δτ

⎤
⎥⎥⎥⎥⎦
(11)

where ϕi = ϕi(ξ, η, ζ ), i = 1,2, . . . ,m, is the basis function of
the space element defined in Eq. (1). This mapping has the char-
acteristic that any points in the reference element with the same
time τ will be mapped to the points in the physical element with
the same time t . The Jacobian matrix is:

J(ξ, η, ζ, τ ) =
⎡
⎢⎣

xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

tξ tη tζ tτ

⎤
⎥⎦

=
⎡
⎢⎣

xξ xη xζ xτ

yξ yη yζ yτ

zξ zη zζ zτ

0 0 0 tτ

⎤
⎥⎦ (12)

where the subscripts mean partial derivatives. By substituting
Eq. (11) to (12), the Jacobian matrix then becomes:

J =
[

J (ξ, η, ζ ) + (Δt)
(τ−τ 1)

Δτ
V∇R(ξ, η, ζ )T Δt

Δτ
VR(ξ, η, ζ )T

0 Δt
Δτ

]
(13)

where J (ξ, η, ζ ) is the spatial element Jacobian at time t1,

J (ξ, η, ζ ) =
⎡
⎢⎣

∑m
i=1

∂ϕi

∂ξ
x1
i

∑m
i=1

∂ϕi

∂η
x1
i

∑m
i=1

∂ϕi

∂ζ
x1
i∑m

i=1
∂ϕi

∂ξ
y1
i

∑m
i=1

∂ϕi

∂η
y1
i

∑m
i=1

∂ϕi

∂ζ
y1
i∑m

i=1
∂ϕi

∂ξ
z1
i

∑m
i=1

∂ϕi

∂η
z1
i

∑m
i=1

∂ϕi

∂ζ
z1
i

⎤
⎥⎦

and ∇R(ξ, η, ζ ) is a 3 × m matrix defined in Eq. (2).

3. Convection–diffusion thermal problem

3.1. Governing equations

The general convection–diffusion heat transfer (transport)
equation, with divergence free velocity field, will be:

ρcp

(
∂T + u · ∇T

)
− ∇(k∇T ) = Q (14)
∂t
or
∂T

∂t
+ u · ∇T − αΔT = Q

ρcp

(15)

where T is the temperature field, u is the given convective ve-
locity field, and α = k/ρcp is the thermal diffusivity, where ρ

and cp are the mass density and specific heat at constant pres-
sure, respectively. k is the thermal conductivity. Q is a heat
source term.

The initial condition can be expressed as:

T (x, y, z,0) = T0(x, y, z), (x, y, z) ∈ Ω (16)

where Ω is the physical domain.
The boundary conditions depend on α. In the case of pure

convection, α = 0, the boundary condition becomes Dirichlet
on the inflow boundary:

T = TD, on Γ in (17)

In this paper, we focus on the case in which α > 0 and the
boundary conditions are:

T = TD on Γ D (Dirichlet boundary) (18)

α∇T · n(x, y, z) = fx on Γ N (Neumann boundary) (19)

where n(x, y, z) is the outward normal at point (x, y, z) on
boundary Γ N .

3.2. Space–time finite element formulation

The temperature field T defined on a space–time slab Sn can
be written as T (x, y, z, t), where (x, y, z) ∈ Ω(t) and t is in the
interval In. The solution is defined on each slab Sn. The bound-
ary of Ω(t) is denoted by Γ (t), and is a union of a Dirichlet part
Γ D(t) and a Neumann part Γ N(t). In a pure advection prob-
lem, with given velocity field u, Γ N(t) is empty, and Γ D(t)

consists of the inlet boundary, which is

Γ in(t) = {
(x, y, z) ∈ Γ (t) | u(x, y, z) · n(x, y, z) < 0

}
(20)

We use Wn to denote the space–time “slab” corresponding
to the chosen discretization on Sn. W denotes the whole space–
time domain on which the space of test functions θ is defined,
i.e., θ ∈ W and θ |Sn ∈ Wn. As usual, T must satisfy the Dirich-
let conditions and θ must satisfy the homogeneous Dirichlet
conditions.

By applying the characteristic streamline diffusion (CSD)
method [16,17], the space–time FE method may now be for-
mulated as follows: for n = 0,1, . . . ,N, find T ∈ Wn such that∫
Sn

(
∂T

∂t
+ u · ∇T

)(
θ + δ

[
∂θ

∂t
+ u · ∇θ

])
dx dy dzdt

+
∫
Sn

α′∇T · ∇θ dx dy dzdt

+
∫
Ω

(
T +

n − T −
n−1

)
θ+
n dx dy dz

=
∫

Q

ρcp

(
θ + δ

[
∂θ

∂t
+ u · ∇θ

])
dx dy dzdt (21)
Sn
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Here

θ±
n = lim

s→0+ θ(tn ± s) (22)

and

δ = C

(1 + |u|2)1/2
max

(
h − α

(1 + |u|2)1/2
,0

)
(23)

where C � 1 and h is a measure of the local mesh size (e.g., the
average element diameter). Note that data are transfered from
one slab to the next via a built-in L2-projection in the jump
term∫
Ω

(
T +

n − T −
n−1

)
θ+
n dx dy dz (24)

Furthermore, let r be a measure of the size of the residual on Sn:

r =
( |T n

+ − T n−1
−|

(tn+1 − tn)
+

∣∣∣∣∂T

∂t
+ u · ∇T

∣∣∣∣
)/

max
Sn

|T | (25)

where the terms in the numerator represents L2 norms over
Ω and Sn, respectively. Then, by considering the residual, the
modified thermal diffusivity is:

α′ = max
(
α,Ch2r

)
(26)

3.3. Domain, initial and boundary conditions

The initial condition for the thermal analysis depends on the
welding process: with or without pre-heating, single- or multi-
pass, and so on. Normally, for a single-pass weld without pre-
heating, the initial temperature field will be set to a constant
value equal to the temperature of the surrounding medium.

Three types of boundary conditions occur in the thermal
analysis of welding process: (1) Dirichlet BC (isothermal
boundary condition), the temperature is prescribed; (2) Neu-
mann or flux BC, the heat flow density is prescribed; (3) Robin
or convection BC, the heat transfer to the surrounding medium
is proportional to the difference between surface temperature
and the surrounding medium temperature.

Fig. 1 shows a scheme of the domain and boundary condi-
tions for the convection–diffusion heat flow analysis in the weld
pool or weld joint region. Γ0 is the inlet surface, normally it is
set to be a Dirichlet BC. Γ1 usually has the flux BC or Dirichlet
BC, which represents heat input. Γ2 is the top surface, which
is usually set to a convection BC that includes radiation effects.
Γ3 is the bottom surface that can be a convection BC, a Neu-
mann BC or a Dirichlet BC. Γ4 are the side surfaces, which can
be a Neumann BC, a convection BC or a Dirichlet BC depend-
ing on the problem. Γ5 is the outlet surface on which a flux BC
is normally applied.

3.4. Melting and solidification

In the molten pool region, the filler metal and base metal will
first melt when heating, then solidify when cooling. Latent heat
should be considered in the thermal analysis for the welding
process. An enthalpy method is used for melting and solidifica-
tion. In this case, the enthalpy increment is used to compute the
residual. The transient convection–diffusion equation (Eq. (14))
could be written as:

∂H

∂t
+ u · ∇H − ∇ · (k∇T ) = Q (27)

where H is the enthalpy.

4. Tests and results

4.1. One-dimensional transient conduction problem

Consider a semi-infinite one-dimensional bar with 0 � x <

∞. The bar is initially at a constant temperature T0 throughout,
when suddenly (at time t = 0) the end at x = 0 is changed to
Tf , the final temperature, and set as a Dirichlet BC. If its side
surfaces have zero Neumann BC (zero flux), then, the transient
temperature distribution can be written as:

T − Tf

T0 − Tf

= erf

(
x

2
√

αt

)
(28)

where T is the temperature at point x at time t . This test is de-
signed to test the transient term and diffusion term of the energy
equation.

The numerical test was performed on a bar mesh with the
size of 1 m × 0.01 m × 0.01 m. To accommodate a sharper
temperature gradient, a finer grid was used at the x = 0 end
(Fig. 2). The material is a low-alloy steel, with the diffusivity
α = 1.13 × 10−5 m2 s−1. The initial temperature T0 = 300 K.
The Dirichlet temperature at x = 0 m is Tf = 400 K.

Fig. 1. Domain and boundary conditions for the thermal analysis on the weld
pool or the weld joint region.

Fig. 2. Bar mesh for the one-dimensional transient conduction problem.
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Fig. 3. The analytic and numerical results for one-dimensional transient conduction problem.

Fig. 4. Mesh for moving line heat source in the infinite plate problem.
Both analytic and numerical results are shown in Fig. 3. It
can be seen that the numerical results agree very well with the
analytic results.

4.2. Moving line heat source in the infinite plate

The widely used analytic model to simulate a butt weld on
a thin plate is the moving line heat source in the infinite thin
plate. The line-type heat source moves at a constant speed in
the infinitely extended thin plate. Because of the small thick-
ness of the workpiece, temperature variations in the thickness
direction are assumed negligible. As such it can be treated as
a two-dimensional problem. The analytic solution for a steady
state temperature distribution T in the plate was provided by
Rykalin [2]:
T − T0 = q

2πkΔ
e−vx/2αR0

(
r

√
v2

4α2
+ b

α

)
(29)

where T0 is the initial temperature, q is the heat transferred from
heat source to plate, Δ is the thickness of the plate, k is the ther-
mal conductivity, v is the velocity of the moving heat source, α

is the thermal diffusivity. R0 is the modified Bessel function of
the second kind and zero order. b is a coefficient for heat loss,
defined as:

b = 2(λc + λr)/(ρcpΔ) (30)

where λc is the coefficient of convective heat transfer, λr is the
coefficient of heat radiation, ρ is the density, and cp is the mass-
specific heat capacity.
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The numerical test was performed on a mesh with the size of
0.24 m×0.672 m×0.003 m. The line source is represented by a
cylinder with radius r = 0.0001 m. A finer grid is used near the
heat source to accommodate a steep temperature gradient near
the weld pool (Fig. 4). The heat from the line source q = 3900
J s−1, and the velocity of the moving heat source v = 0.002
m s−1. The thermal diffusivity α = 1.13 × 10−5 m2 s−1 and
heat transfer coefficient b = 0.00377 s−1. The inlet Dirichlet
temperature is 300 K.

The FEM thermal result is shown in Fig. 5. To check the val-
idation, a comparison of FEM results with the analytic solution
(Eq. (29)) is made (Figs. 6–7). A very good agreement between
the numerical results and analytic results is observed.

5. Applications

5.1. Thermal analysis on the weld pool of a butt weld

In an arc weld, a highly localized concentrated energy source
fuses the filler metal and nearby base metal to form a weld pool.
The shape and temperature distribution of a weld pool are de-
pendent on the type of welding processes, welding parameters
(welding velocity, diameter of wire, wire feed rate, voltage, cur-
rent density, angle of workpiece inclination, etc.) and the weld
materials. One of the major challenges of computational weld
mechanics is to simulate the geometry and temperature distri-
bution of a weld pool accurately and efficiently.
Fig. 5. Temperature field for moving line heat source in the infinite plate prob-
lem.

There are several approaches to model the effects of the heat
source on a weld pool. One of the simple ways is to prescribe
either the thermal flux or power density distribution, or the tem-
perature distribution in the weld pool by a distribution function
that intend to model the heat input. Some examples are the
double-ellipsoid model provided by Goldak et al. [19] for most
realistic welds with simple shapes, and the compound-ellipsoid
Fig. 6. Longitudinal temperature distribution for moving line heat source in the infinite plate problem.
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Fig. 7. Transverse temperature distribution for moving line heat source in the infinite plate problem.
model by Gu et al. [20] for a more complicated shape which
can occur in high power submerged arc welds. These models
are convenient, accurate, efficient and flexible in an application
as long as the geometry of the liquid–air surface of the molten
pool does not need to be considered.

The energy transport (heat flow) is influenced not only by
the content of enthalpy, but also by the deformation of the
weld pool, especially the deformation of the molten pool sur-
face profile. For some applications, such as welding a pipe, or a
workpiece with very large inclination angle (such as vertical or
overhead), the weld pool can be heavily deformed, due to grav-
ity, arc pressure and surface tension. In such cases, the weld
pool analysis should consider the geometry of the weld pool
surface.

In this section, a model based on the force balance among
gravity, arc pressure and surface tension, that predicts both the
temperature distribution in the weld pool and the surface geom-
etry of the molten pool, is briefly presented that can deal with
many different welding applications.

5.1.1. The hydrostatic surface tension model
The physical phenomena in and around the weld pool during

welding are very complicated. The simplification made in this
model is based on the following assumptions:

• The influence of the fluid flow in the molten pool on the
heat flow could be neglected;

• The weld pool is considered to be in a quasi-steady state;
• The heat flow density (flux) transferred from the welding

arc to the weld pool is assumed to follow a model provided
by Weiss [21] which depends on the electrical resistance in
the plasma of the arc. The corresponding distribution func-
tion is:
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Fig. 8. Mesh for weld pool problem.

Φ(x,y, z, T ) = exp

(
− R2 − R2

min

R2
max − R2

min

)
(31)

where R is the electrical resistance on a line from the elec-
trode tip to a point on the weld pool surface with tempera-
ture (x, y, z, T );

• The pool surface is assumed to be in a static equilibrium
with respect to gravity, arc pressure and surface tension.
The influence of buoyancy, inertial force and the electro-
magnetic force are disregarded. So, for each point on the
surface, a static force balance in the normal direction is as-
sumed over the surface among arc pressure, surface tension
and hydrostatic pressure [21,22].

5.1.2. Results
The weld pool model was tested on a flat weld pool mesh

(Fig. 8) to simulate the formation of the weld pool surface and
the temperature distribution on the upper side of a horizontal
workpiece. The thermal results of the weld pool will be used
as a heat source for the thermal analysis of a weld joint (see
Section 5.2).

A weld pool domain of size 0.01 m×0.024 m×0.038 m was
a sub-domain cut from a butt weld thermal problem with size of
0.01 m × 0.12 m × 0.25 m. The material was a low alloy steel.
The heat input Q = 1900 J s−1, and welding velocity v = 0.002
m s−1. The inlet surface was set to be a Dirichlet boundary
condition, with Dirichlet temperature TD = 300 K. The out-
let surface was set to be a flux boundary condition. The flux
data was from the thermal results of the larger domain by do-
main decomposition. The upper and bottom surfaces are natural
convection boundary conditions. The side surfaces are Dirichlet
boundary conditions, with the temperature values from the ther-
mal results of the larger domain by domain decomposition. The
molten zone shape and temperature distribution were shown in
Figs. 9 and 10.

5.2. Thermal analysis on a butt weld joint

A thermal analysis of a butt weld joint was also presented
here as one application. It was performed on a mesh 0.01
Fig. 9. Weld pool thermal result of a butt weld.

m thick, 0.12 m wide and 0.25 m long (Fig. 11). The co-
ordinates are x: the thickness direction; y: the lateral direc-
tion; and z: the longitudinal direction. The moving mesh was
fixed with the heat source with the welding speed at 0.002
m s−1 in z-direction. The center of the weld pool was 0.025 m
from the leading edge. The material was low-alloy steel with
temperature-dependent properties.

The inlet surface was a Dirichlet boundary condition, with
the Dirichlet temperature TD = 300 K. The outlet surface was
a zero flux boundary condition. The other four surfaces were
a natural convection boundary condition. The heat source was
provided by the hydrostatic surface tension weld pool model
discussed in Section 5.1.

The temperature field from the weld pool analysis (Figs. 9
and 10) was used as a Dirichlet temperature in the weld pool re-
gion. In detail, the temperature field from the weld pool model
was mapped to the current weld joint domain, all the nodes
with temperature greater than 1200 K were set to the Dirich-
let temperature. After 30 time steps, with each time step size 4
seconds, the temperature field reached a quasi-stationary state.
The steady state results of this test (Figs. 12–13) will be used to
analyze microstructure evolution and stresses.
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Fig. 10. Weld pool cross section of a butt weld.
6. Conclusions

A space–time finite element method (FEM) has been used
to analyze the transient thermal cycle during the welding pro-
cess by solving the convection–diffusion thermal equation.
The Eulerian formulation can provide higher spatial resolu-
tion compared to the usual Lagrangian formulation. The model
can also include the addition of the filler metal during ther-
mal analysis. The model was tested with problems that have
analytic solutions. The numerical results fit the analytic re-
sults very well. The thermal tests show that the space–time
FE method is appropriate to deal with the 3D thermal analy-
sis in the weld pool and/or weld joint domain which is fixed
with the heat source. It can provide both the transient and
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Fig. 11. Mesh for a butt weld thermal analysis.

quasi-stationary results. The thermal cycle of a material point
can be obtained by traversing geometry space along a flow
line and mapping data into the time dimension. The ther-
mal results obtained can be used to analyze the microstruc-
ture evolution in the fusion zone (FZ) and heat affected zone
(HAZ).
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Fig. 12. Top view of temperature distribution for a butt weld thermal analysis.

Fig. 13. Temperature distribution at the mid-plane for a butt weld thermal analysis.



S. Wang et al. / International Journal of Thermal Sciences 48 (2009) 936–947 947
References

[1] D. Rosenthal, The theory of moving sources of heat and its application to
metal treatment, Trans. ASME 68 (1946) 849–865.

[2] R.R. Rykalin, Calculation of Heat Processes in Welding, Educational Lec-
ture, Am. Weld. Soc. Annual Assembly, New York, 1961.

[3] D. Radaj, Heat Effects of Welding, Springer-Verlag, 1992.
[4] Y. Ueda, H. Murakawa, Applications of computer and numerical analysis

techniques in welding research, Trans. JWRI 13 (1984) 337–346.
[5] J.H. Argyris, J. Szimmat, K.J. Willam, Computational aspects of welding

stress analysis, Comp. Meth. Appl. Mech. Eng. 33 (1982) 635–666.
[6] J.A. Goldak, Modeling thermal stresses and distortions in welds, in: Re-

cent trends in welding science and technology, in: TWR’89, Proc. of the
2nd International Conference on Trends in Welding Research, Gatlinburg,
Tennessee, USA, 14–18 May, 1989.

[7] M. Gu, J.A. Goldak, E. Hughes, Steady state thermal analysis of welds
with filler metal addition, Can. Metall. Q. 32 (1993) 49–55.

[8] J.M. McDill, J.A. Goldak, A.S. Oddy, M.J. Bibby, Isoparametric quadri-
laterals and hexahedrons for mesh-grading algorithms, Comm. Appl.
Num. Meth. 3 (1986) 155–163.

[9] J. Goldak, A. Oddy, M. Gu, W. Ma, A. Mashaie, E. Hughes, Coupling
heat transfer, microstructure evolution and thermal stress analysis in weld
mechanics, IUTAM Symposium, Lulea, Sweden, June 10–14, 1991.

[10] S.M. Rajadhyaksha, P. Michaleris, Optimization of thermal processes us-
ing an Eulerian formulation and application in laser surface hardening, Int.
J. Num. Methods Eng. 47 (2000) 1807–1823.

[11] X. Chen, M. Becker, L. Meekisho, Welding analysis in moving coordi-
nates, in: H. Cerjak (Ed.), Mathematical Modelling of Weld Phenomena,
vol. 4, Institute of Materials, UK, 1998, pp. 396–410.

[12] E.P. DeGarmo, J.L. Meriam, F. Jonassen, The effect of weld length upon
the residual stresses of unrestrained butt welds, Welding Research (Suppl.)
(1946) 485–487.
[13] C. Johnson, Finite element methods for convection–diffusion problems,
in: R. Glowinski, J.L. Lions (Eds.), Computing Methods in Engineering
and Applied Sciences, vol. V, North-Holland, 1982, pp. 311–323.

[14] T.J.R. Hughes, G.M. Hulbert, Space–time element methods for elasto-
dynamics: Formulations and error estimates, Comp. Meth. Appl. Mech.
Eng. 66 (1988) 339–363.

[15] F. Shakib, T.J.R. Hughes, A new finite element formulation for computa-
tional fluid dynamics: IX. Fourier analysis of space–time Galerkin/least-
squares algorithms, Comp. Meth. Appl. Mech. Eng. 87 (1991) 35–58.

[16] P. Hansbo, The characteristic streamline diffusion method for convection–
diffusion problems, Comp. Meth. Appl. Mech. Eng. 96 (1992) 239–253.

[17] K. Eriksson, C. Johnson, Adaptive streamline diffusion finite element
methods for stationary convection–diffusion problems, Math. Comp. 60
(1993) 167–188.

[18] O.C. Zienkiewics, R.L. Taylor, J.Z. Zhu, The Finite Element Method:
Its Basis and Fundamentals, sixth ed., Elsevier–Butterworth–Heinemann,
2005.

[19] J.A. Goldak, A. Chakravarti, M.J. Bibby, A new finite element model for
welding heat sources, Metallurgical Trans. AIME 15B (1984) 299–305.

[20] M. Gu, J.A. Goldak, M.J. Bibby, Computational heat transfer in welds
with complex weld pool shapes, Advanced Manufacturing Engineering 3
(1991) 31–36.

[21] D. Weiss, U. Franz, J. Schmidt, A model of temperature distribution and
weld pool deformation during arc welding, in: H. Cerjak (Ed.), Mathe-
matical Modelling of Weld Phenomena, The Institute of Materials, 1995,
pp. 22–39.

[22] T. Ohji, K. Nishiguchi, Mathematical modelling of a molten pool in arc
welding of thin plate, Technology Reports of the Osaka Univ. 33 (1983)
35–43.


	Simulation on the thermal cycle of a welding process by space-time convection-diffusion finite element analysis
	Introduction
	Space-time finite element
	Convection-diffusion thermal problem
	Governing equations
	Space-time finite element formulation
	Domain, initial and boundary conditions
	Melting and solidification

	Tests and results
	One-dimensional transient conduction problem
	Moving line heat source in the infinite plate

	Applications
	Thermal analysis on the weld pool of a butt weld
	The hydrostatic surface tension model
	Results

	Thermal analysis on a butt weld joint

	Conclusions
	Acknowledgements
	References


